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The relativistic inverse stellar structure problem determines the equation of state of the stellar matter
given a knowledge of suitable macroscopic observable properties (e.g. their masses and radii) of the stars
composed of that material. This study determines how accurately this equation of state can be determined
using noisy mass and radius observations. The relationship between the size of the observational errors and
the accuracy of the inferred equation of state is evaluated, and the optimal number of adjustable equation of
state parameters needed to achieve the highest accuracy is determined.
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I. INTRODUCTION

The quantity and quality of astrophysical observations of
the masses and radii of neutron stars has improved signifi-
cantly in the past decade [1–9]. Masses have now been
measured at the few percent level for dozens of neutron
stars, and both mass and radius have been measured for a
few neutron stars at the 10%–20% level. It is well known
that a knowledge of the masses and radii of neutron stars can
be used to infer the equation of state of the high density
material in the cores of these stars [10]. The purpose of this
paper is to apply a simple uncertainty quantification analysis
[11] to the relativistic inverse stellar structure problem, i.e.
the problem of determining the high density neutron-star
equation of state from a knowledge of the masses and radii
of those stars. The goal of this analysis is to determine the
relationship between the accuracy of the available mass-
radius data with the accuracy of the equation of state that
can be inferred from those data.
Section II of this paper describes the method of solving

the relativistic inverse stellar structure problem used in this
study. This method constructs a parametric representation of
the high-density equation of state by fixing its parameters to
minimize the differences between the resulting model
neutron stars and the observed mass-radius data [12–14].
The particular parametric equation of state representation
used in this study is a causal spectral representation with
basis functions constructed from Chebyshev polynomials
[15]. The basic properties of this equation of state repre-
sentation are summarized in the Appendix.
Section III constructs the collections of mock noisy

mass-radius data used in this study to evaluate the accuracy
of the equations of state determined from them. These
mock noisy data are constructed here by adding random
errors of various sizes to the exact masses and radii

computed from the GM1L nuclear-theory based neu-
tron-star equation of state [16–18]. Four collections of
mock data, each containing 1000 noisy mass-radius
curves, are constructed with random fractional error
amplitudes 0.1%, 1%, 10%, and 20%.
Section IV solves the relativistic inverse stellar structure

problem using the mock noisy mass-radius data prepared in
Sec. III. Parametrized equations of state using different
numbers of spectral parameters, Nparms ¼ 1;…; 5 are deter-
mined for each noisy mass-radius curve by solving the
inverse stellar structure problem as described in Sec. II. The
accuracy of these parametric equations of state are evaluated
by measuring the differences between them and the exact
GM1L equation of state from which the mock data are
constructed. The dependence of these equation of state
errors on the accuracy of the mock observational data is then
evaluated for equation of state representations with different
numbers of spectral parameters.
Section V presents a brief summary of the results of the

uncertainty quantification analysis presented in this study,
along with a discussion of some interesting implications of
these results.

II. INVERSE STELLAR STRUCTURE PROBLEM

The matter in the cores of neutron stars is driven to very
high temperatures by the gravitational collapse of the matter
that forms these stars. These temperatures briefly become
high enough to disrupt the atomic nuclei of this matter, so
this material is expected to have universal thermodynamic
properties determined by nuclear physics and not on the
prior thermodynamic history of material from which it
formed. All neutron stars are therefore expected to be
composed of material having the same high-density equa-
tion of state. The relativistic inverse stellar structure problem

PHYSICAL REVIEW D 111, 063024 (2025)

2470-0010=2025=111(6)=063024(8) 063024-1 © 2025 American Physical Society

https://orcid.org/0000-0002-3018-1098
https://orcid.org/0009-0005-6605-1358
https://ror.org/0168r3w48
https://ror.org/04fnrxr62
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.111.063024&domain=pdf&date_stamp=2025-03-11
https://doi.org/10.1103/PhysRevD.111.063024
https://doi.org/10.1103/PhysRevD.111.063024
https://doi.org/10.1103/PhysRevD.111.063024
https://doi.org/10.1103/PhysRevD.111.063024


determines this equation of state from a knowledge of the
macroscopic observable properties of neutron stars, e.g.
their masses and radii or tidal deformabilities [14]. This
section summarizes the particular solution to this problem
used in this study [12,13].
The relativistic inverse stellar structure problem is

solved here by representing the unknown equation of state
parametrically, ϵ ¼ ϵðp; υaÞ, where ϵ is the total energy
density of the material, p is the pressure, and the υa for
a ¼ 1;…; Nparms are adjustable parameters. These param-
eters are fixed by making the stellar models based on this
equation of state match the observational mass-radius data
fMi; Rig for i ¼ 1;…; NMR as closely as possible.
The particular equation of state representation used in

this study is based on a Chebyshev polynomial spectral
expansion [15] which is described in the Appendix. The
Oppenheimer-Volkoff relativistic stellar structure equa-
tions [19] are solved using the equation of state with
specified values of υa to determine the masses, Mðpi

c; υaÞ,
and radii, Rðpi

c; υaÞ, of the stellar models with central
pressures pi

c. Given a collection of mass-radius observ-
ables, fMi; Rig for i ¼ 1;…; NMR, the values of the
equation of state parameters υa are adjusted to make
the stellar model properties fMðpi

c; υaÞ; Rðpi
c; υaÞg match

the observables fMi; Rig as closely as possible. This is
done by minimizing the error function χ2, defined by,

χ2ðpi
c; υaÞ ¼

1

NMR

XNMR

j¼1

��
log

�
Mðpj

c; υaÞ
Mj

��2

þ
�
log

�
Rðpj

c; υaÞ
Rj

��2�
; ð1Þ

with respect to the equation of state parameters, υa, as well
as the central pressures, pi

c, of the stars with observational
data points, fMi; Rig. The equation of state determined by
the parameters υa that minimize χ2 is therefore an approxi-
mate solution to the inverse stellar structure problem.
The mock observational data points fMi; Rig used in this

study were constructed from a particular nuclear-theory
based equation of state. Since the exact equation of state is
known in this case, it is possible to evaluate the accuracy of
the parametric equation of state, ϵ ¼ ϵðp; υaÞ, determined
by the solution to the inverse stellar structure problem. This
is done by evaluating the equation of state error function,Δ,
defined by,

Δ2ðυaÞ ¼
1

NEOS

XNEOS

k¼1

�
log

�
ϵðpk; υaÞ

ϵk

��
2

; ð2Þ

where fϵk; pkg are points from the exact equation of state
table used to generate the mock observational data points,
fMi; Rig. The Chebyshev polynomial based equation of
state representations used in this study have been shown to

provide convergent representations for a wide range of
neutron-star equations of state [15].1 This study explores
the extent to which approximate solutions to the inverse
stellar structure problem are also convergent in the sense
that they produce equation of state error functions ΔðυaÞ
that decrease toward zero as the number of parameters υa
increases.

III. NOISY MASS-RADIUS DATA

Mock noisy observational data fMi; Rig are constructed
for this study by adding random errors to a collection of
points fM̃i; R̃ig from the exact mass-radius curve associated
with a known equation of state. These random errors are
parametrized by an error amplitude A and a random phase
variable δ. The noisy mock data fMi; Rig are generated
from fM̃i; R̃ig:

Mi ¼ ð1þ δAÞM̃i; ð3Þ

Ri ¼ ð1þ δAÞR̃i: ð4Þ

The random phase variables δ are uniformly distributed over
the domain −1 ≤ δ ≤ 1. They are computed for this study
using the random number generator ran2 from Ref. [20].
The error amplitude A is the maximum fractional error of
each point in each noisy mock observational mass-radius
curve, fMi; Rig.
The reference equation of state used to compute the

mock fMi; Rig data for this study is the nuclear-theory
based equation of state GM1L. This equation of state was
constructed in Ref. [16] from the relativistic mean field
GM1 equation of state of Ref. [17] by adjusting the slope
of the symmetry energy to agree with the established value,
L ¼ 55 MeV, using the formalism developed in Ref. [18].
The masses and radii of the neutron-star models computed
from this equation of state are illustrated in Fig. 1 for the
models with masses in the astrophysically interesting
range M ≥ 1.2Msun.
The reference fM̃i; R̃ig data points used in this study

were selected from the mass-radius curve illustrated in
Fig. 1. The number of data points NMR was chosen to be
NMR ¼ 10 for this study. This aspirational choice is some-
what larger than the currently available number of high
quality data points, but is within the range of what might
become available in the not too distant future. The dis-
tribution of these NMR ¼ 10 data points are also chosen
aspirationally for this study. Rather than choosing these
points randomly from the astrophysically relevant range
of masses, 1.2Msun ≤ M ≤ Mmax, they are chosen here to

1The mock mass-radius data analyzed in this study are from
the contiguous branch of stable neutron-stars. The Chebyshev
based representations have been tested for a wide range of
neutron-star equations of state, including those with a range of
phase transitions that may exist in these stars.
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sample models whose central pressures are relatively uni-
formly distributed along the high density equation of state
curve. Figure 2 illustrates the M̃i chosen here as a function
of the central pressures of those stellar models. The equation
of state errors achieved with these aspirational choices for
the mock observational data are likely to be somewhat
smaller than could be achieved with a smaller number of
randomly distributed data points. The numerical values of
these exact fM̃i; R̃ig data points are listed in Table I.
Starting from the exact reference fM̃i; R̃ig given in

Table I, collections of noisy mock data fMi; Rig were
constructed using Eqs. (3) and (4) for four different
fractional error amplitudes: A ¼ f0.2; 0.1; 0.01; 0.001g.
The larger values, A ¼ f0.2; 0.1g, are more or less at

the currently achievable observational error levels, while
the smaller values A ¼ f0.01; 0.001g were included to
explore how accurately the equation of state might be
determined if/when more accurate data become available.
Mock observational data collections, each containing 1000
fMi; Rig noisy mass-radius curves, were constructed for
each of these error amplitudes:A ¼ f0.2; 0.1; 0.01; 0.001g.
Figure 3 illustrates the regions of the mass-radius plane
occupied by the points in these four mock observational
data collections.

IV. UNCERTAINTY QUANTIFICATION

This section describes the uncertainty quantification
analysis of the relativistic inverse stellar structure problem
performed for this study. This analysis begins by solving
the inverse stellar structure problem outlined in Sec. II for
each collection of mock observational data fMi; Rig
described in Sec. III. These solutions provide equations
of state for each dataset in the collections defined by their
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FIG. 2. Neutron-star masses as functions of their central
pressures for the ten fM̃i; R̃ig reference data points used in this
study. The constant pmin ¼ 1.20788 × 1032 erg=cm3 used to
scale the pressures in this figure is the lower limit of the domain
on which spectral representations are used for the high density
equation of state.
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FIG. 1. Neutron-star model masses and radii computed from the
GM1L nuclear-theory based equation of state.

TABLE I. fM̃i; R̃ig data for the neutron-star models computed
from the GM1L nuclear-theory equation of state. These reference
fM̃i; R̃ig values are used to generate the noisy datasets for the
uncertainty quantification analysis in this study.

M̃=Msun R̃ (km) M̃=Msun R̃ (km)

1.244629 12.90062 2.200004 12.34184
1.556269 12.92859 2.256765 12.13824
1.802454 12.85875 2.291466 11.93727
1.984403 12.71947 2.310322 11.74336
2.112802 12.54009 2.318418 11.49951
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FIG. 3. Regions of the mass-radius plane occupied by the
perturbed fMi; Rig datasets used in this study. Random pertur-
bations with amplitudes A ¼ f0.2; 0.1; 0.01; 0.001g were added
to the exact fM̃i; R̃ig points from the GM1L equation of state to
construct datasets with 1000 perturbed fMi; Rig curves for each
of the four error amplitudes.
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error amplitudes, A ¼ f0.2; 0.1; 0.01; 0.001g. Evaluating
the relationship between the accuracies of these equations
of state and the accuracies of the mock observational data
used to compute them determines the uncertainty quanti-
fication for this problem.
The first step in this analysis is to minimize the

differences between the model observables fMðpi
c; υaÞ;

Rðpi
c; υaÞg and the mock observational data fMi; Rig as

measured by the mass-radius fitting function χ defined in
Eq. (1). These minimizations have been carried out for this
study for each of the mock observational datsets using
equation of state representations with Nparms ¼ 1;…; 5
spectral parameters. The numerical calculations used in
this study were performed using two independent codes to
confirm the accuracy of the results. The χ2 minimizations
were carried out numerically using a Fortran implementation
of the Levenburg-Marquardt algorithm as described in
Ref. [20], and using the scipy.optimize.least_
squares implementation in Python [21]. The resulting
minimal values of χ obtained by these independent codes
agree to within a few percent.
Figure 4 illustrates how well the model observables are

able to fit the collections of mock noisy data with error
amplitudes A ¼ f0.2; 0.1; 0.01; 0.001g. The quantity χ̄ is
the average of the minimum values of χ over the 1000
fMi; Rig datsets with error amplitude A. Figure 4 illus-
trates χ̄ for each collection of mock data as functions of the
number of spectral parameters used to compute the model
observables. These results show that these minimum χ̄
values are about half the values of the observational errors
for the A ¼ f0.2; 0.1; 0.01g data collections, as well as the
Nparms ¼ 3;…; 5 cases for the A ¼ 0.001 collection. The
solid (black) curve in Fig. 4 is the graph of the minimum χ

values for the exact reference fM̃i; R̃ig data. These exact
results, labeled A ¼ 0.0 in Fig. 4, show that the minimum
values of χ̄ for the Nparms ¼ 1, 2 cases of the A ¼ 0.001
collection are limited by the accuracy of the spectral
representation of the equation of state rather than the
accuracy of the observational fMi; Rig data.
Figure 5 illustrates the range of χ values obtained for

each collection of noisy fMi; Rig data. Note that the upper
limits of these χ ranges are smaller than the observational
data errors for the A ¼ f0.2; 0.1; 0.01g data collections,
and for theNparms ¼ 4, 5 cases of theA ¼ 0.001 collection.
These results show that the neutron-star models constructed
here do a good job of representing noisy observational
fMi; Rig data at an accuracy level commensurate with the
amplitude of the observational errors.
The next step is to evaluate the accuracy of the

equations of state determined by the spectral parameters,
υa, that minimize the mass-radius fitting errors χ. These
accuracies are measured by comparing the model equation
of state determined by the minimizing parameters, υa, with
the GM1L equation of state used to compute the exact
fM̃i; R̃ig data. These comparisons are made by evaluating
the equation of state error function Δ defined in Eq. (2)
for each fMi; Rig dataset. Figure 6 illustrates Δ̄, the
average value of Δ over each of the collections, A ¼
f0.2; 0.1; 0.01; 0.001g, along with the results for the exact
A ¼ 0.0 case, as functions of the number of spectral
parameters, Nparms. This figure shows that increasing the
number of spectral parameters does not necessarily increase
the accuracy of the equation of state determined by the
inverse stellar structure problem using noisy mass-radius
data. For the A ¼ f0.2; 0.1g collections, the optimal
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FIG. 5. Ranges of the minimum values of χ, the mass-
radius fitting errors defined in Eq. (1), for each collection of
mock observational fMi; Rig data as functions of Nparms, the
number of spectral parameters used to model the high-density
equation of state.
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FIG. 4. Values of χ̄, the mass-radius fitting errors defined in
Eq. (1) averaged over the collection of mock observational
fMi; Rig data, as functions of Nparms, the number of spectral
parameters used to model the high density equation of state.
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number of spectral parameters is Nparms ¼ 1. Observational
data with higher accuracies can benefit, however, from
higher order spectral representations. The best accuracy for
the A ¼ 0.01 collection could perhaps be improved a little
over theNparms ¼ 1 case usingNparms ¼ 3, and the accuracy
for the A ¼ 0.001 collection could definitely be improved
over the Nparms ¼ 1 case using Nparms ¼ 4.
Figure 7 illustrates the range of Δ values obtained

for the collections of noisy fMi; Rig data with A ¼
f0.2; 0.1; 0.01; 0.001g as well as the values obtained for
theA ¼ 0.0 case using the exact fM̃i; R̃ig data. Also shown
for comparison in Fig. 7 are the values of Δ for the optimal
spectral representations of the GM1L equation of state.
These optimal representations are obtained by minimizing
Δ defined in Eq. (2) with respect to variations in the
equation of state parameters υa [15] using all the points
fϵk; pkg in the table that defines the GM1L equation of
state. These optimal values are distinct from and smaller
than the values obtained for the A ¼ 0.0 case by minimiz-
ing χ using the exact fM̃i; R̃ig data. The upper limits of the
ranges of Δ in theA ¼ f0.2; 0.1; 0.01g data collections are
smallest for the Nparms ¼ 1 spectral representations, show-
ing that this is the best spectral order to use for these cases.
These upper range limits show that the equation of state
can be determined at an accuracy level commensurate with
the size of the observational error using an Nparms ¼ 1

spectral representation, unless the observational error is
smaller than A ¼ 0.01. The results in Fig. 7 also show that
improving the accuracy with which the equation of state
can be determined by adding spectral parameters beyond
Nparms ¼ 1 will not succeed unless the error levels in the

observational fMi; Rig data are at the A ¼ 0.001 level or
smaller. It is also interesting to note that the minimum
range of the A ¼ 0.001 data in Fig. 7 extend almost all the
way to the optimal GM1L values. Therefore some combi-
nations of mass-radius errors provide more accurate
solutions to the inverse structure problem than the exact
mass-radius data. Unfortunately it is not possible to know
a priori what those optimal mass-radius error combina-
tions are for any given equation of state.

V. DISCUSSION

This study has evaluated the accuracy with which the
neutron-star equation of state can be determined by solving
the inverse relativistic stellar structure problem using noisy
mass and radius data. Large collections of mock observa-
tional mass-radius data were prepared by adding random
errors with a range of sizes, A ¼ f0.2; 0.1; 0.01; 0.001g, to
the exact mass-radius values computed from a known
neutron-star equation of state. The inverse stellar structure
problem was solved using these mock data, and the
accuracy of the resulting equations of state were evaluated
by comparing them to the nuclear-theory equation of state
used to construct the mock mass-radius data. These tests
show that in most cases the equation of state can be
determined at an accuracy level commensurate with the
accuracy of the mass-radius observations. The exceptions to
this basic result were for very high accuracy mass-radius
data,A ≤ 0.001, where the accuracy of the equation of state
could be limited by the accuracy of the equation of state

1 2 3 4 5

N
parms

10
-2

10
-1

�

FIG. 6. Equation of state errors Δ̄ averaged over each collection
of 1000 fMi; Rig datasets are shown as functions of the number
of spectral parametersNparms. The fitting errorΔ is also shown for
the equation of state obtained using the exact, A ¼ 0.0, fM̃i; R̃ig
dataset as the solid (black) curve.
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FIG. 7. Ranges of the values of Δ, the equation of state fitting
error defined in Eq. (2), for the high density equation of state
determined by the best fits for each of the perturbed fMi; Rig
datasets. Also shown as the circular data points is the equation of
state error Δ associated with the optimal spectral fit to the exact
GM1L equation of state from which the noisy datasets were
constructed for this study.
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representation rather than the accuracy of the mass-
radius data.
The method described in Sec. II for solving the

relativistic inverse stellar structure problem is simpler than
would be required to analyze real observational data. For
example, the quantity χ defined in Eq. (1) to measure how
well the computed observables fMiðpi

c; υaÞ; Riðpi
c; υaÞg

agree with the observed quantities fMi; Rig treats each
observed quantity equally. The analysis of real fMi; Rig
data, however, should weight each observed quantity in χ
individually, so that accurate measurements contribute
more to χ, while those with less accuracy contribute less.
The mock data constructed for this study have error
distributions of the same size for all the observables in
each mock dataset. Consequently no observable specific
weighting was needed in the definition of the χ measure for
this study. Similarly, the errors associated with real
fMi; Rig observations will satisfy complicated probability
distributions determined by the particular observational
technique. The uniform error distributions used in this
study were chosen for their simplicity. Our expectation is
that the commensurate relationship between the size of the
observational errors and the accuracy of the inferred
equation of state found here should apply qualitatively
for realistic observational error distributions.
One interesting, and perhaps somewhat counter intui-

tive, finding of this study is the fact that increasing the
number of parameters included in the spectral representa-
tion does not in general increase the accuracy of the
equation of state determined by the inverse stellar structure
problem using noisy mass-radius data. The average equa-
tion of state errors, Δ̄, are smallest for the Nparms ¼ 1

representations of the noisy mass-radius data with error
amplitudes A ¼ f0.2; 0.1g. Increasing Nparms in these
cases produces worse approximations. This nonconvergent
behavior can occur when attempting to fit noisy data with
models having too many parameters.2 The exceptions to
this general rule are cases with much higher accuracy data,
A ¼ f0.01; 0.001g. The A ¼ 0.01 case is marginal, but Δ̄
is decreased somewhat by increasing from Nparms ¼ 1

to Nparms ¼ 3 in this case. The A ¼ 0.001 case is more
clear cut; Δ̄ is significantly reduced by increasing from
Nparms ¼ 1 to Nparms ¼ 3 or 4.
The physical neutron-star equation of state is still

unknown at this point. Therefore in the analysis of actual

mass-radius observations it is not possible to evaluate a
direct measure of the accuracy of the inferred equation of
state with the Δ measure used here. Consequently it is more
difficult in real situations to determine the optimal number
of equation of state parameters, Nparms, to use for the data
analysis. The results of this study, however, suggest a
possible way to do this. Consider the Nparms dependence
of the average mass-radius fitting errors, χ̄, illustrated in
Fig. 4. The values of χ̄ in this study are essentially
independent of Nparms for the A ¼ f0.2; 0.1; 0.01g collec-
tions of mock mass-radius data. Thus the quality of the
model fits to those mass-radius data are not significantly
improved beyond the Nparms ¼ 1 fits. This result is in good
agreement with the average accuracies, Δ̄, of the equation of
state fits shown in Fig. 6 using those mock data. Only the
A ¼ 0.001 curve in Fig. 4 shows a significant improvement
in χ̄ at Nparms ¼ 3, in good agreement again with the
average accuracy Δ̄ obtained for that case. This suggests
that the analysis of real mass-radius data should include
evaluating the mass-radius fitting errors χ for a range of
values of Nparms using a convergent representation of the
equation of state. This study suggests that the optimal
choice of Nparms is the point where χ becomes relatively
constant for higher values of Nparms. Using this approach
requires the use of a parametric equation of state represen-
tation whose accuracy can be improved by increasing the
number of parameters, e.g. those in Refs. [15,22–24], rather
than a representation having a fixed number of parameters
like Ref. [25].
Another detail that deserves a little more discussion is

the difference between the A ¼ 0.0 results shown in
Figs. 4–7, and the optimal GM1L spectral fit shown in
Fig. 7. The A ¼ 0.0 results are solutions to the inverse
stellar structure problem using the exact fM̃i; R̃ig data.
(The “exact” fM̃i; R̃ig used here have fractional errors
below 10−7.) The A ¼ 0.0 curves in the various figures
illustrate how well the inverse structure problem could be
solved if observational errors were significantly reduced
below present levels. The results for the optimal GM1L
spectral fit shown in Fig. 7 represent the accuracy of the
spectral fit obtained by minimizing ΔðυaÞ in Eq. (2) with
respect to variations in the spectral parameters υa. The
difference between the A ¼ 0.0 and the optimal GM1L
curves in Fig. 7 shows that there are (generally small)
limitations to the accuracy of the solutions of the inverse
structure problem that go beyond the errors in the
observational data or the intrinsic accuracy of the spectral
representations. These differences might be caused by the
limited number of data NMR or the distribution of mass-
radius data used in this study.
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APPENDIX: CAUSAL SPECTRAL
REPRESENTATIONS

This appendix summarizes the Chebyshev based causal
spectral representations of the high-density neutron-star
equations of state used in this study, developed originally in
Ref. [15]. These Chebyshev based representations have
been shown to provide efficient convergent representations
for a wide range of potential neutron-star equations of state,
including those with first- and second-order phase tran-
sitions.3 The speed of sound, v, in a barotropic fluid is
determined by the equation of state: v2 ¼ dp=dϵ [27].
These sound speeds are causal if and only if the velocity
function ϒ,

ϒ ¼ c2 − v2

v2
; ðA1Þ

is non-negative, ϒ ≥ 0, where c is the speed of light.
The velocity functionϒ is determined by the equation of

state: ϒðpÞ ¼ c2dϵ=dp − 1. Conversely, ϒðpÞ can be used
as a generating function from which the standard equation
of state, ϵ ¼ ϵðpÞ, can be determined by quadrature. The
definition of the velocity function ϒðpÞ can be rewritten as
the ordinary differential equation,

dϵðpÞ
dp

¼ 1

c2
þϒðpÞ

c2
: ðA2Þ

This equation can then be integrated to determine the
equation of state, ϵ ¼ ϵðpÞ:

ϵðpÞ ¼ ϵmin þ
p − pmin

c2
þ 1

c2

Z
p

pmin

ϒðp0Þdp0: ðA3Þ

Causal parametric representations of the neutron-star
equation of state can be constructed by expressingϒðp; υaÞ
as a spectral expansion based on Chebyshev polynomials
developed in Ref. [15]:

ϒðp; υaÞ ¼ ϒmin exp

( XNparms−1

a¼0

υað1þ yÞTaðyÞ
)
; ðA4Þ

where the TaðyÞ are Chebyshev polynomials. The variable y
(defined below) is a function of the pressure having the
property that y ¼ −1 when p ¼ pmin. The constants εmin
and ϒmin are evaluated from the low-density equation of
state at the point p ¼ pmin where it matches onto the high
density spectral representation determined by Eq. (A4).
Choosing εmin andϒmin in this way ensures that no artificial
first- or second-order phase-transition discontinuity is intro-
duced at the matching point. These expansions guarantee
that ϒðpÞ ≥ 0 for every choice of υa. Therefore any
equation of state determined from one of these ϒðp; υaÞ
automatically satisfies the causality and thermodynamic
stability conditions.
Chebyshev polynomials are defined by the recursion

relation Taþ1ðyÞ ¼ 2yTaðyÞ − Ta−1ðyÞ with T0ðyÞ ¼ 1 and
T1ðyÞ ¼ y. Spectral expansions using Chebyshev basis
functions are well behaved on the domain −1 ≤ y ≤ 1
[28]. Therefore the variable y that appears in Eq. (A4) has
been defined as

y ¼ −1þ 2 log

�
p

pmin

��
log

�
pmax

pmin

��
−1
; ðA5Þ

to ensure that −1 ≤ y ≤ 1 for pressures in the range pmin ≤
p ≤ pmax. The factor 1þ y that appears in Eq. (A4)
ensures that ϒðp; υaÞ has the limit, ϒðpmin; υaÞ ¼ ϒmin,
for every choice of spectral parameters υa. The values
of the equation of state parameters used in this study
to model the high-density portion of the GM1L equation
of state are pmin ¼ 1.20788 × 1032 erg=cm3, pmax ¼
8.87671 × 1035 erg=cm3, ϵmin ¼ 5.08587 × 1013 g=cm3,
and ϒmin ¼ 277.532.

3Spectral representations were tested in Ref. [26] for model
neutron-star equations of state with a wide range of first- or
second-order phase transitions. The range of first-order transi-
tions extended to the discontinuity large enough to trigger an
instability that terminates the contiguous sequence of stable
neutron stars. The range of second-order transitions extended
to the upper limit set by causality. Lower order spectral
representations of equations of state with these first- or sec-
ond-order phase transitions were shown in Ref. [26] to be more
accurate than a nonsmooth piecewise-analytic causal representa-
tion with the same numbers of adjustable parameters.
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